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Alternative Title: TB or not TB
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General Motivation

Collaborator gives you hundreds (or thousands) of longitudinal

-omics variables and a clinical outcome of interest, with the

motivating question depending on the type of outcome:

• Longitudinal continuous outcome, e.g. some measure of

disease severity

• Which omic variables co-vary over time with the

outcome?

• Binary outcome that could be misclassified, e.g. disease

recurrence or an indicator for some condition

• Which omic variables are associated with the (latent)

outcome?
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General Motivation

• High-dimensional omics data is recently more feasible to

collect and will be increasingly common in clinical data

• Variables selected from the -omics pool could be used as

non-invasive markers for early disease progression, and

provide insight into biological processes

• There is extensive work in the omics arena, especially in

differential expression/abundance between groups.

However, we have identified two main gaps in the

longitudinal omics setting.
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Targeted Gaps

For longitudinal continuous outcomes,

• clinicians typically apply univariate linear mixed effects

models or generalized estimating equations, depending on

the magnitude of n

• We propose a joint model that leverages correlation over

time as well as correlation between variables to select a

sparse set of biomarkers

• We provide a framework for uncertainty quantification

AND inference with two or more treatment groups
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Targeted Gaps

For binary outcomes,

• Some methods handle potential misclassification, and

others address variable selection for large sets of omics

variables, but no methods deal with both simultaneously

• We provide a penalized EM algorithm that accounts for

covariate-related misclassification that leverages the

between-variable correlations and can perform variable

selection
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Roadmap

1. First-differencing longitudinal omics data and

incorporating observed covariate dependence via weighted

graph Laplacian

2. PROLONG - Penalized regression on outcome-guided

longitudinal omics data with network and group

constraints

3. Uncertainty quantification in a network-constrained sparse

group lasso model for outcome-guided high-dimensional

omics data with multiple treatment groups

4. Penalized logistic regression on binary clinical outcomes

with potential covariate-related misclassification, with

application to longitudinal omics data
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Section 1 - First Differencing and graph Laplacian

1. First-differencing longitudinal omics data and

incorporating observed covariate dependence via weighted

graph Laplacian

2. PROLONG - Penalized regression on outcome-guided

longitudinal omics data with network and group

constraints

3. Uncertainty quantification in a network-constrained sparse

group lasso model for outcome-guided high-dimensional

omics data with multiple treatment groups

4. Penalized logistic regression on binary clinical outcomes

with potential covariate-related misclassification, with

application to longitudinal omics data
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First-Differencing

• Capture trends over time, de-emphasize baseline value

(intercept)

• Controls first-order time dependence in the outcome

• Remove any time-invariant heterogeneous effects,

simplifying the model parameters

• Analogous to running a paired test
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Graph Laplacian Penalty

• The graph Laplacian is often used when there is a known

graph associated with the data. Lacking a prior graph, we

use a weighted graph extracted from the observed

absolute correlation matrix

• Leverages potentially useful correlation information in

predictors by nudging coefficients for correlated variables

together (smoothing over dependence network)

• Alleviates numerical challenges typical to lasso type

problems in presence of multicollinearity

• If two variables are identical, the respective coefficients

will be identical

• The penalization allows us to obtain a maximum

likelihood estimator (MLE) for the noise variance σ̂2 of Y
10



Graph Laplacian Penalty

• The graph Laplacian is often used when there is a known

graph associated with the data. Lacking a prior graph, we

use a weighted graph extracted from the observed

absolute correlation matrix

• Leverages potentially useful correlation information in

predictors by nudging coefficients for correlated variables

together (smoothing over dependence network)

• Alleviates numerical challenges typical to lasso type

problems in presence of multicollinearity

• If two variables are identical, the respective coefficients

will be identical

• The penalization allows us to obtain a maximum

likelihood estimator (MLE) for the noise variance σ̂2 of Y
10



Graph Laplacian Penalty

• The graph Laplacian is often used when there is a known

graph associated with the data. Lacking a prior graph, we

use a weighted graph extracted from the observed

absolute correlation matrix

• Leverages potentially useful correlation information in

predictors by nudging coefficients for correlated variables

together (smoothing over dependence network)

• Alleviates numerical challenges typical to lasso type

problems in presence of multicollinearity

• If two variables are identical, the respective coefficients

will be identical

• The penalization allows us to obtain a maximum

likelihood estimator (MLE) for the noise variance σ̂2 of Y
10



Graph Laplacian Penalty

• The graph Laplacian is often used when there is a known

graph associated with the data. Lacking a prior graph, we

use a weighted graph extracted from the observed

absolute correlation matrix

• Leverages potentially useful correlation information in

predictors by nudging coefficients for correlated variables

together (smoothing over dependence network)

• Alleviates numerical challenges typical to lasso type

problems in presence of multicollinearity

• If two variables are identical, the respective coefficients

will be identical

• The penalization allows us to obtain a maximum

likelihood estimator (MLE) for the noise variance σ̂2 of Y
10



Graph Laplacian Penalty

• The graph Laplacian is often used when there is a known

graph associated with the data. Lacking a prior graph, we

use a weighted graph extracted from the observed

absolute correlation matrix

• Leverages potentially useful correlation information in

predictors by nudging coefficients for correlated variables

together (smoothing over dependence network)

• Alleviates numerical challenges typical to lasso type

problems in presence of multicollinearity

• If two variables are identical, the respective coefficients

will be identical

• The penalization allows us to obtain a maximum

likelihood estimator (MLE) for the noise variance σ̂2 of Y
10



Grouping Effect Example

Theorem
(Grouping Effect) Given data (Y ,X ) and fixed scalar λ, let

β̂(λ) be a Laplacian-penalized estimator. Suppose β̂i β̂j > 0

and the two vertices i and j are only linked to each other on

the network, di = dj = w(i , j). Define

Dλ(i , j) =
1

||Y ||1

∣∣∣β̂i (λ)− β̂j (λ)
∣∣∣ .

then

Dλ(i , j) ≤
√
2(1− ρ)

2λ

where ||Y ||1 =
∑n

i=1 |Yi | and ρ = XT
.i X.j captures the sample

correlation.
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Section 2 - PROLONG

1. First-differencing longitudinal omics data and

incorporating observed covariate dependence via weighted

graph Laplacian

2. PROLONG - Penalized regression on outcome-guided

longitudinal omics data with network and group

constraints

3. Uncertainty quantification in a network-constrained sparse

group lasso model for outcome-guided high-dimensional

omics data with multiple treatment groups

4. Penalized logistic regression on binary clinical outcomes

with potential covariate-related misclassification, with

application to longitudinal omics data
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Structure of the Data

• Outcome is TB mycobacterial load measured by Time to

Positivity (TTP), which is inversely related to TB severity

• 15 TB patients taking the same combination drug RHEZ

• 4 time points, one at baseline and 3 following RHEZ

treatment

• 352 untargeted urinary metabolites as our predictors

• These untargeted metabolites are typically known to have

low signal and high noise
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Tuberculosis Data
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General Idea

• First-difference the data, then stack our t − 1 values of X

and Y so we have

Y = [Y4 − Y3 Y3 − Y2 Y2 − Y1]
T

And for each variable j we have

Xj = [Xj4 − Xj3 Xj3 − Xj2 Xj2 − Xj1]
T

• Set up design matrix so that each first-differenced Y

value is regressed on all prior first-differenced values of X

to account for potential lags

• Apply Laplacian and group lasso penalties to induce

sparsity while utilizing correlation and inherent group

structure

15
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Vectorized Y

Ỹ =

Ỹ11 · · · Ỹ1T

...

Ỹn1 · · · ỸnT


n×T

→

∆Ỹ11 · · · ∆Ỹ1(T−1)
...

∆Ỹn1 · · · ∆Ỹn(T−1)


n×(t−1)

→ Y =



∆Ỹ11

...

∆Ỹn1

∆Ỹ1(T−1)
...

∆Ỹn(T−1)


n(T−1)×1
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Moving X from Tensor to Matrix

X̃ [j] =

X̃
[j]
11 · · · X̃

[j]
1T

...

X̃
[j]
n1 · · · X̃

[j]
nT


n×T

→


∆X̃

[j]
11 · · · ∆X̃

[j]
1(T−1)

...

∆X̃
[j]
n1 · · · ∆X̃

[j]
n(T−1)


n×(T−1)

→ X [j] =



∆X̃
[j]
11

0 0 0...

∆X̃
[j]
n1

0

∆X̃
[j]
11 ∆X̃

[j]
12

0 0...

∆X̃
[j]
n1 ∆X̃

[j]
n2

0 0
. . . 0

0 0 0

∆X̃
[j]
11 · · · ∆X̃

[j]
1(T−1)

...

∆X̃
[j]
n1 · · · ∆X̃

[j]
n(T−1)


n(T−1)×T (T−1)/2
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Moving X from Tensor to Matrix

Now replace each ∆X̃
[j]
it with row vector

∆X̃it = |∆X̃
[1]
it ∆X̃

[2]
it . . .∆X̃

[p]
it |

→ X =



∆X̃11

0 0 0...

∆X̃n1

0

∆X̃11 ∆X̃12

0 0...

∆X̃n1 ∆X̃n2

0 0
. . . 0

0 0 0

∆X̃11 · · · ∆X̃1(T−1)
...

∆X̃n1 · · · ∆X̃n(T−1)


n(T−1)×pT (T−1)/2
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Group Lasso Laplacian Penalty

Given our first-differenced and stacked response vector Y , and

our first-differenced and stacked design matrix X , we seek to

minimize

(Y − Xβ)T (Y − Xβ) + λ1

p∑
j=1

∥∥β(j)

∥∥
2
+ λ2β

TLβ,

• λ1 is the tuning parameter for our group lasso penalty

• λ2 is the tuning parameter for the network penalty

• L is the Laplacian matrix for the weighted graph where

the edge weights between each pair of variables are their

absolute correlation

19
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Data Augmentation

Instead of directly minimizing

(Y − Xβ)T (Y − Xβ) + λ1

p∑
j=1

∥∥β(j)

∥∥
2
+ λ2β

TLβ,

we fit group lasso to the Laplacian augmented data

[
Y

0

]
,

1√
1 + λ2

[
X√
λ2S

T

]
where L = SST . We then rescale β̂ by 1√

1+λ2
.

Note that this is similar to the elastic net but with S instead

of I , and like with the elastic net we can potentially select all

p variables even when p > n.

20
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Grouping Effect

Theorem
(Grouping Effect) Given data (Y ,X ) and fixed scalars

λ1, λ2, let β̂(λ1, λ2) be the PROLONG solution. Suppose

β̂i β̂j > 0, the group sizes pi , pj are the same, and the two

vertices i and j are only linked to each other on the network,

di = dj = w(i , j). Define

Dλ1,λ2(i , j) =
1

||Y ||1

∣∣∣β̂i(λ1, λ2)− |β̂j(λ1, λ2)
∣∣∣ .

then

Dλ1,λ2(i , j) ≤
√
2(1− ρ)

2λ2
+

λ1
√
pi

λ2||Y ||1
where ||Y ||1 =

∑n
i=1 |Yi | and ρ = XT

.i X.j captures the sample

correlation. 21



Performance with Real Data

• Univariate linear mixed effect models do not pick up a

single metabolite from our 352 at an FDR of 0.05

• PROLONG selects ∼ 30 metabolites, including targets

identified by our clinician collaborators and during our

EDA

22
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Applying PROLONG

• R package ‘prolong‘, available on Github currently, takes

in raw time-scale data and

• First-differences and shapes the data into the block

design structure

• Automatically selects hyper-parameters and fits the

model

• Provides visualizations for the full data and for selected

variables

23
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R Package Selected Variable Trajectories

24



Section 3 - Uncertainty Quantification

1. First-differencing longitudinal omics data and

incorporating observed covariate dependence via weighted

graph Laplacian

2. PROLONG - Penalized regression on outcome-guided

longitudinal omics data with network and group

constraints

3. Uncertainty quantification in a network-constrained sparse

group lasso model for outcome-guided high-dimensional

omics data with multiple treatment groups

4. Penalized logistic regression on binary clinical outcomes

with potential covariate-related misclassification, with

application to longitudinal omics data

25



General Idea

• Motivated by recent results on the sparse group lasso, we

move PROLONG from group lasso + network to sparse

group lasso + network penalization.

• We construct a debiased estimator to enable uncertainty

quantification and inference.

• Given multiple treatment groups, we provide a framework

that allows for joint inference while allowing model

hyper-parameters to vary by treatment group.

• If we tune hyper-parameters across all groups, low signal

groups like our NTZ data in the following slide can lead

to over-sparsifying the other groups.
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Pooled Data

NTZ RHEZ
27



Sparse Group Lasso

Our combined sparse group lasso + network penalty is

λ1|β|1 + λ1

√
(τ)

K∑
k=1

√
pk

∥∥β(k)
∥∥
2
+ λ2β

⊤Lβ,

where we have a weighted sum of lasso and group lasso

penalty terms.

The underlying assumption here is that our true β is both

sparse not only between groups but also within groups.
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Grouping Effect

Theorem
(Grouping Effect). Given dataset (Y ,X ) and fixed scalars

(λ1, λ2, τ), the response Y is centered and predictors X are

standardized. Let β̂ (λ1, λ2, τ) be the doubly-sparse

PROLONG estimator. Suppose that

β̂i (λ1, λ2, τ) β̂j (λ1, λ2, τ) > 0, the group sizes pi and pj are

the same, and the two vertices i and j are only linked to each

other on the network, di = dj = w(i , j). Define

Dλ1,λ2,τ (i , j) =
1

||Y ||1

∣∣∣β̂i (λ1, λ2, τ)− β̂j (λ1, λ2, τ)
∣∣∣ .

Then

Dλ1,λ2,τ (i , j) ≤
1

2λ2

√
2(1− ρ) +

λ1
√
piτ

λ2||Y ||1
.
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Debiased Lasso

The KKT conditions for lasso estimator β̂n, which describe

necessary conditions for finding an optimal solution β̂n without

violating our constraints, give

X⊤(Y − X β̂n)

n
= λ1s

where s is a subgradient of the ℓ1 penalty at β̂n.

We add a term proportional to the subgradient to compensate

for the downward bias introduced by the ℓ1 penalty.

β̂u = β̂n +
MX⊤(Y − X β̂n)

n
,

Here, M is a matrix designed to ’decorrelate’ the columns of

X , and controls both the bias and variance for our debiased

estimator. 30
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Obtaining M

Algorithm 1 Relaxed Precision Matrix Estimation

Input: Matrix X, scalar µ

Set Σ̂ ≡
(
X⊤X

)
/n.

for i = 1, 2, . . . , p do

Let mi be a solution of the convex program:

minimize m⊤Σ̂m subject to
∥∥∥Σ̂m − ei

∥∥∥
∞

≤ µ

where ei ∈ Rp is the vector with one at the i -th position and

zero everywhere else. ▷ Set M = Ip×p if not feasible
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Purpose of M

• Controlling |MΣ̂− I |∞, the maximum absolute entry-wise

difference, controls the bias of β̂u

• Minimizing the diagonal elements of MΣ̂M controls the

variance of β̂u
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Debiased Sparse Group Lasso

We use the same correction as in the debiased lasso,

β̂u = β̂n +
MX⊤(Y − X β̂n)

n
,

obtaining an estimator β̂u that is approximately Gaussian with

covariance σ2MΣ̂M/n.
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Obtaining σ̂2

Consider the optimization problem

argmin
β

{
||Y − Xβ||22 + β⊤(λ2L+ λR I )β

}
,

where λR I ensures that λ2L+ λR I is invertible.

Maximizing the respective log-likelihood l (σ2, λ2, λr ) gives

σ2 =
1

n
yTΣ−1

L y .

where

ΣL = X (λ2L+ λR I )
−1X⊤ + I
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Wald Test

For treatment groups a = 1, . . . ,A, we seek to test

|β̂u⊤
g ,1, . . . , β̂u⊤

g ,A|⊤ = 0.

We apply a Wald test with H0 : βg = 0;HA : βg ̸= 0 ∀g .

Our covariance matrix is block diagonal, with one block for

each treatment group a: σ̂2
1Q1/n

∗
1 · · · 0

...
. . .

...

0 · · · σ̂2
AQA/n

∗
A

 ,

where Qa = MaΣ̂aMa, and Ma is our relaxed inverse of Σ̂a.
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Debiasing Algorithm

Algorithm 2 PROLONG Debiasing

Input: Vector y ∈ Rn(T−1), matrix X ∈ Rn(T−1)×pT (T−1)/2,

PROLONG estimator β̂n∗ .

Output: Unbiased estimator β̂u, covariance matrix Q.

procedure prolong debiasing

Σ̂ = X⊤X
n

M = relaxed inverse(Σ̂)

β̂u = β̂n∗ + MX⊤(Y−X β̂n∗ )
n∗

Q = MΣM

end procedure=0
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Inference

Algorithm 3 PROLONG Inference

Input: Matrices Ya ∈ Rna×T , tensors Xa ∈ Rna×p×T for

a = 1, . . . ,A, FDR threshold α.

procedure prolong inference

for a = 1, . . . ,A do

Xa = GetDeltaX(Xa) ▷ Xa ∈ Rna(T−1)×pT (T−1)/2

ya = GetDeltaY(Ya) ▷ ya ∈ Rna(T−1)

β̂n∗
a = prolong(ya,Xa) ▷ n∗a = na(T − 1)

(β̂u
a ,Qa) = prolong debiasing(Ya,Xa, β̂

n∗a
a )

σ̂2
a = σ̂2

aMLE

end for

∀g Wald test with FDR correction at specified α

end procedure 37



Inference Procedure Selected Variable Trajectories

38



Software

• The sparse group lasso update, debiasing step, and

inference step will be added to R package ‘prolong‘ into a

second main function

• All tuning parameters will be selected automatically via

MLE or cross-validation with the exception of an optional

FDR threshold
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Section 4 - Binary Outcome

1. First-differencing longitudinal omics data and

incorporating observed covariate dependence via weighted

graph Laplacian

2. PROLONG - Penalized regression on outcome-guided

longitudinal omics data with network and group

constraints

3. Uncertainty quantification in a network-constrained sparse

group lasso model for outcome-guided high-dimensional

omics data with multiple treatment groups

4. Penalized logistic regression on binary clinical outcomes

with potential covariate-related misclassification, with

application to longitudinal omics data
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General Idea

• We have some latent binary Y , but can only measure

some Y ∗ that may have some misclassification dependent

on variables Z .

• For cross-sectional demographic variables, we want to

obtain accurate β̂’s and uncertainty quantification.

• For large sets of longitudinal omics variables, we want to

perform variable selection.

• Use information from the observed correlation and adjust

for any covariate-related misclassification.
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Model for Latent Y

We are interested in the relationship between some

cross-sectional, binary Y and one or more variables X .

We can write our conditional probabilities of Y taking value 1

as

P (Yi = 1 | Xi ; β) = πi1 =
exp {β1,0 + β1,XXi}

1 + exp {β1,0 + β1,XXi}

We use value 2 as our reference category instead of 0 for ease

of indexing.
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Structure of X

We focus our application to two general types of X

• Cross-sectional - no transformations applied

• Longitudinal omics - we recommend first-differencing, but

do not strictly require doing soX̃
[j]
11 · · · X̃

[j]
1T

...

X̃
[j]
n1 · · · X̃

[j]
nT


n×T

→


∆X̃

[j]
11 · · · ∆X̃

[j]
1(T−1)

...

∆X̃
[j]
n1 · · · ∆X̃

[j]
n(T−1)


n×(T−1)

43



Structure of X

We focus our application to two general types of X

• Cross-sectional - no transformations applied

• Longitudinal omics - we recommend first-differencing, but

do not strictly require doing soX̃
[j]
11 · · · X̃

[j]
1T

...

X̃
[j]
n1 · · · X̃

[j]
nT


n×T

→


∆X̃

[j]
11 · · · ∆X̃

[j]
1(T−1)

...

∆X̃
[j]
n1 · · · ∆X̃

[j]
n(T−1)


n×(T−1)

43



Misclassification Mechanism

Instead of directly observing Y we observe Y ∗, which also

takes value 1 or 2, that is a potentially misclassified version of

Y . We can write Y ∗, conditional on Y , as

P(Y ∗
i = k |Yi = l ,Zi ; γ) = π∗

ikl =
exp{γkj0 + γklZZi}

1 + exp{γkl0 + γklZZi}
,

where Z is a matrix of covariates that may be related to the

misclassification.
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Complete Data Log-Likelihood

We can estimate (β, γ) via observed log-likelihood

ℓobs(β, γ;X ,Z ) =
n∑

i=1

2∑
k=1

y ∗
ik log


2∑

j=1

π∗
ikl︸︷︷︸
γ

πil︸︷︷︸
β

 .

However, jointly maxing β, γ is numerically challenging, so we

use the complete log-likelihood with the latent Y , separating

the π∗ and π components

ℓcomplete(β, γ;X ,Z ) =
n∑

i=1

 2∑
l=1

yil log

 πil︸︷︷︸
β


+

2∑
l=1

2∑
k=1

yily
∗
ik log

 π∗
ikl︸︷︷︸
γ


 .
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Network Penalized Log-Likelihood

To incorporate the observed dependence from the covariates in

X , we again use penalty λβTLβ. We modify the complete

data log-likelihood as follows:

ℓpenalized(β, γ, λ,X ,Z )

= ℓcomplete(β, γ;X ,Z )− λβ⊤Lβ

=
n∑

i=1

 2∑
l=1

yil log

 πil︸︷︷︸
β

+
2∑

l=1

2∑
k=1

yily
∗
ik log

 π∗
ikl︸︷︷︸
γ


− λβ⊤Lβ

We use this log-likelihood as the starting point for the

penalized EM algorithm.
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Penalized EM Algorithm - E-step

In the expectation (E) step, we replace the latent yil with our

”best guess” of the probability that yil = 1, wil

wil = P(Yi = l |Y ∗
i ,X ,Z ) =

2∑
k=1

y ∗
ikπ

∗
klπil∑2

ℓ=1 π
∗
ikℓπiℓ
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Penalized EM Algorithm - M-step

In the maximization (M) step, we separate our expected

log-likelihood into functions of β, γk1, and γk2

Q =
n∑

i=1

 2∑
l=1

wil log

 πil︸︷︷︸
β

+
2∑

l=1

2∑
k=1

wily
∗
ik log

 π∗
ikl︸︷︷︸
γ




⇒ QL
β =

n∑
i=1

 2∑
l=1

wil log

 πil︸︷︷︸
β


− λβ⊤Lβ,

Qγk1 =
n∑

i=1

 2∑
k=1

wi1y
∗
ik log

π∗
ik1︸︷︷︸
γ


 (sensitivity component),

Qγk2 =
n∑

i=1

 2∑
k=1

wi2y
∗
ik log

π∗
ik2︸︷︷︸
γ


 (specificity component).
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Penalized EM Algorithm - M-step

We fit the Qγ components via weighted logistic regression

where the outcome is Y ∗. We can rewrite QL
β as

QL
β =

n∑
i=1

[
2∑

l=1

wil log {πil}

]
− λβ⊤Lβ,

=
n∑

i=1

[
2∑

l=1

wL
il log

{
πL
il

}]
where

wL
il = [wil ; 2]; X L = (1 + λ)−1/2[Xi ;λ

1/2S⊤]

πL
il =

exp
{
βl0 + βlXX

L
}

1 + exp {βj0 + βlXX L}
L = SS⊤

We fit QL
β via quasi-binomial logistic regression with

augmented wL
il as the outcome and X L as the covariates.
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Grouping Effect

Theorem
(Grouping Effect) Given data (Y ,X ) and fixed scalar λ, let

β̂(λ) be the estimator obtained via the proposed EM

algorithm. Suppose β̂i β̂j > 0 and the two vertices i and j are

only linked to each other on the network, di = dj = w(i , j).

Define

Dλ(i , j) =
1

||Y ||1

∣∣∣β̂i (λ)− β̂j (λ)
∣∣∣ .

then

Dλ(i , j) ≤
√
2(1− ρ)

2λ
.

50



Data Application: MEPS

Data used in original unpenalized method ’COMBO’:

• Outcome is self-reported history of MI

• Variables of interest are Age along with Smoking and

Exercise Status

• Covariates for Misclassification are Age and Sex

Correlation Table:

Smoking Exercise Age

Smoking 1.0000 0.0284 -0.0593

Exercise 0.0284 1.0000 0.0109

Age -0.0593 0.0109 1.0000
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Sanity Checking with Low Correlation Data

Parameter Estimates SE Estimates SE

Intercept -4.3741 0.0655 -4.3874 0.0670

Smoking 1.5437 0.1066 1.5496 0.1039

Exercise 0.3034 0.1257 0.3066 0.1262

Age 0.0939 0.0097 0.0938 0.0091

gamma11 2.9692 0.0997 2.9973 0.0988

gamma21 -1.7656 0.0363 -1.7759 0.0363

gamma31 -0.1984 0.0047 -0.1995 0.0046

gamma12 -3.5796 0.1124 -3.5749 0.1128

gamma22 -0.8183 0.1084 -0.8184 0.1083

gamma32 0.0835 0.0050 0.0833 0.0050︷ ︸︸ ︷
Unpenalized

︷ ︸︸ ︷
Laplacian 52



Group Lasso Modification

In some applications, we may prioritize variable selection over

unbiased dense coefficient estimation, e.g. biomarker discovery

with large p omic data. We can supplement our network

penalty with a group lasso penalty, replacing QL
β with

Qg
β =

n∑
i=1

[
2∑

l=1

wL
il log

{
πL
il

}]
− λg

K∑
k=1

pkβ
(k),

where pk is the group size. We maximize Qg
β using group

lasso, selecting λg via cross-validation after we select λ and

augment wL
il ,X

L.
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Future Data Work

This project is particularly motivated by very similar data to

the first two, but with binary TB Recurrence as our outcome.

• Consider the same data structure, but now our outcome

indicates whether the TB comes back in the next few

years after treatment

• This indicator may be misclassified, as some patients can

be clinically, but not microbiologically, confirmed

• Can we identify biomarkers for later recurrence of TB?

Another motivating data application is finding early

metabolomic biomarkers for drug-resistant TB. Drug

resistance in TB can lead to delays in adequate treatment and

result in worse disease progression - identifying drug-resistance

early is critical. 54
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