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Motivation in Short

Clinician gives you a longitudinal clinical outcome, along with
hundreds (or thousands) of longitudinal -omics variables, and
asks which variables co-vary with the outcome?



Motivation in Pictures - Qutcome
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Motivation in Pictures - Example Variable 1
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Motivation in Pictures - Example Variable 2
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Motivation in More Words

We have:
e Longitudinal measurements for some continuous outcome
and for -omics variables with only a few time points
e Large amount of variables with relatively small number of

subjects

We want to:

e Identify -omics variables that co-vary with the outcome
e Overcome time dependence, low signal, and high subject
variability

e Incorporate correlation of the variables



Tuberculosis Data

e 15 subjects, TB patients treated with RHEZ [rifampin
(R), isoniazid (H), ethambutol (E), and pyrazinamide (Z)]

e TB mycobacterial load measured by Time to Positivity
(TTP) as our Y

e 352 urinary metabolites as our X

e 4 time points, days 0, 2, 4, 14



General Model Idea

e Take first difference of the data to deal with observed
temporal dependence

e Stack our t — 1 first differenced value of X and Y so we
have

Y=|Ys—Y; Y;— Y, Yo —Yi|T
And for each variable j we have
X=X X Xa-Xp Xa-Xal”
e Set up design matrix so that each first differenced Y value
is regressed on all prior first differenced values of X to
account for potential lags

e Apply network and group lasso penalties to induce sparsity
while utilizing correlation and inherent group structure s
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Moving X from Tensor to Matrix
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Moving X from Tensor to Matrix

Now replace A)?,[!] with row vector
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Group Lasso Laplacian Penalty

Given our stacked response vector Y and design matrix X we
seek to minimize

p
(Y = XB)T(Y = XB)+ M Y _ 1By ll, + X287 L8,
j=1

e )\; is the tuning parameter for our group lasso penalty,
where each group j corresponds to all of the
representations in the design matrix of the jth variable

e )\, is the tuning parameter for the network penalty

e [ is the Laplacian matrix for the weighted graph where
the edge weights between each pair of variables are their

absolute correlation
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Nice Properties of this Penalty

e Each variable is represented multiple times in the model,
but the group lasso penalty results in either all zero or all
non-zero coefficients for the representations of each
variable, helping interpretability

e If two variables are highly correlated, and one is a strong
enough predictor to be selected, the other variable is more
likely to be selected than if they weren't correlated

e If two variables are identical, either both will be selected
and have the same coefficient or neither will be selected
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Models Compared

e Linear Mixed Effects Model, one variable at a time
e Wald test on the A scale, one variable at a time
e PROLONG

In the following simulations, the univariate models are
evaluated at different FDR thresholds and compared to
PROLONG
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Simulation Scenarios

e Simulated data mimics real TB data in means, variances
etc. but with specified relationships between X's and Y
e QOutcome is generated by simulated, correlated target

variables at varying dimensions with a SNR ranging from
1to2

e 10, 20, and 50 target variables
e 20, 80, and 300 noise variables

e Each scenario is run 100 times, and the models are
evaluated by selection rate of target and noise variables
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Performance in Simulations
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Performance in Simulations
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Performance in Simulations
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Performance with Real Data

e Univariate mixed effect models do not pick up a single
metabolite from our 352 at an FDR of 0.05

e Univariate Delta Wald tests pick 116 metabolites at an
FDR of 0.05

e PROLONG selects 29 metabolites, including targets
identified by our clinician collaborators and during our
EDA
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e PROLONG gets high sensitivity and specificity in
simulations while 'competitor’ mixed effects univariate
models fail to distinguish between targets and noise
across the board

e The univariate Wald version of our model does relatively
well at each dimension, indicating the importance of the
first-differencing and block structure

e PROLONG improves as dimension and sparsity increase
and picks up significantly less noise than the univariate
Wald
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Applying PROLONG

e R package ‘prolong’, available on Github currently, takes
in raw time-scale data and
e First-differences and shapes the data into the block
design structure
e Automatically selects hyper-parameters and fits the
model
e Provides visualizations for the full data and for selected

variables
e Shiny app is in development and will be included within
the ‘prolong’ package, providing a point-and-click
interface for users with less familiarity with R
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R Package Selected Variable Trajectories

89.0503_1.55_+ 100.1019_11.01_+ 103.0641_4.31_+ 114.0781_4.42_+ 116.0954_11.55_+ 125.0163_3.28_+
7.5+ 200-
= T
154 15+ 15- 175-
13- 12- 1891
- 107 9- 10.0-
0 2 4 14 0 2 4 14 0 2 4 14 0 2 4 14
204.1867_9.3_+ 247.1558_1.56_+ 297.1762_3.22_+
16~
15-
14~

20- 15-
12-
15- 9-

0 2 4 14

o-
~
IS
=

15-
12-
9-
0 2 4 14

334.1604_1.61_+ 145.0742_1.47_- 183.0531_2_-
o 18- 17.5- 13- B
% 14~ 15.0- 12- 17-
i i 3 16-
> 12 125 ::; T 15-
0 2 4 14 0 2 4 14 2 4 14
189.0041_5.59_- 229.0042_0.9_- 302.0843_1.37_
" e
3 ] 164 ]
i P b
b b == 10-
0 N 0- Y 8- N —
0 2 4 14 0 2 4 14 2 4 14
322.0567_2.13_- 344.0923_0.81_ 345.0832_2.94_- 406.1291_2.26 -

13- 16-

11- 14- 1257

9- 12- 100-
0 2 4 1

time

o-
~
IS
3

22



R Package Correlation Heatmap
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e Fixed effects for multiple treatments, patient

demographics, etc.
e Multi-omic data

e Tensor extension to avoid matricization and vectorization
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Contact and Manuscript

Thank Youl

R package available via Github:
https://github.com/stevebroll/prolong

PROLONG
1/2

——

Manuscript available via Biorxiv:

ﬁ Steve Broll, Sumanta Basu, Myung Hee Lee, and Martin T. Wells.
PROLONG: Penalized regression for outcome guided longitudinal omics
analysis with network and group constraints.
bioRxiv, 2023.

Email me at sh2643Qcornell.edu

https://stevebroll.github.io
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