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Motivation

The cosine of the angle cos(θ) between two vectors is just the Pearson
correlation coefficient ρ [1]. By studying the distributions of the
maximums or minimums of angles, and of the cosines of those angles, we
can find the asymptotic behavior of the maximum and minimum
correlation coefficients as n→∞.

Additionally, if we study the squared cosine of these angles
cos2(θ) = ρ2 = R2, we are studying Beta-distributed random-variables [2]
and so we can use the tail properties of the Beta distribution.

The material covered in this presentation is relevant in high dimensional
statistics and machine learning applications.
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Introduction to Extreme Value Distributions (EVDs)

Mikosch’s Regular Variation, Subexponentiality, and Their Applications in
Probability Theory [3] provides an intuitive introduction to Extreme Value
Distributions and their properties by first defining Regular Variation and
Stable Distributions.
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Heavy Tails
Introduction to Extreme Value Distributions
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Heavy Tails
Introduction to Extreme Value Distributions

There is no universal definition for ’heavy-tailed’ distributions, but we
expect there to be some kind of strange behavior in samples caused by
sample extrema. According to Mikosch [3], the exponential distribution is
usually considered as the borderline between heavy- and light-tailed
distributions.

Mikosch covers two classes of heavy-tailed distributions: Regularly Varying
and Subexponential Distributions. In the following slides we will focus on
Regularly Varying distributions.
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Regular Variation
Introduction to Extreme Value Distributions

Definition 1.1 ([3, p. 7])

A positive measurable function f is regularly varying (at infinity) with
index α ∈ R if
- It is defined on some neighborhood of infinity [x0,∞)

- lim
x→∞

f (tx)
f (x) = tα ∀t > 0

Definition 1.2 ([3, p. 7])

f is slowly varying (at infinity) if f is regularly varying with α = 0

6 / 30



Regular Variation
Introduction to Extreme Value Distributions

Remark 1.3 ([3, p. 7])

Every regularly varying f with index α has representation

f (x) = xαL(x)

for some slowly varying function L

Example 1.4 ([3, p. 8])

Slowly varying: Positive constants, logarithms and iterated logarithms
Regularly varying: xα, (x log(1 + x))α, xα log(log(e + x))
Not regularly varying: 2 + sin x , exp{ln(1 + x)}
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Uniform Convergence and Equivalence
Introduction to Extreme Value Distributions

Theorem 1.5 ( [3, p. 9])

If f is regularly varying with index α, then for 0 < a ≤ b <∞ the
convergence of

lim
x→∞

f (tx)

f (x)
= tα

is uniform (in t) on [a, b] for α = 0, (0, b] if α > 0, and [a,∞) if α < 0

Definition 1.6 ([3, p. 11])

For any positive functions f and g, f (x) ∼ g(x) as x →∞ if

lim
x→∞

f (x)

g(x)
= 1

We say f and g have the same tail behavior.
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Regularly Varying Random Variables
Introduction to Extreme Value Distributions

Definition 1.7

A non-negative random variable X and its distribution are
regularly varying with index α ≥ 0 if F̄x is regularly varying with index
−α
where F̄x = 1− Fx is the right distribution tail.

9 / 30



Convolution of Regularly Varying Random Variables
Introduction to Extreme Value Distributions

Lemma 1.8 (Convolution closure of regularly varying distributions [3,
p. 12])

Let X ,Y be independent, non-negative, regularly varying random variables
with index α ≥ 0. Then X + Y is regularly varying with index α.
Additionally, as x →∞ P(X + Y > x) ∼ P(X > x) + P(Y > x)

Remark 1.9 ([3, p. 12])

If X ,Y are non-negative and regularly varying with index αX , αY and
αX < αY , then X + Y is regularly varying with index αX

Remark 1.10 ([3, p. 12])

If X ,Y are non-negative random variables s.t. P(Y > x) = o(P(X > x))
and X is regularly varying with index α, then as x →∞
P(X + Y > x) ∼ P(X > x)
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Maximum of Regularly Varying Random Variables
Introduction to Extreme Value Distributions

The previous slides immediately lead to our first maximal value result:

Corollary 1.11 ([3, p. 13])

Let X ,X1, ...,Xn be iid non-negative regularly varying random variables
and Sn = X1 + · · ·+ Xn. Then as x →∞,
P(Sn > x) = P(X1 + · · ·+ Xn > x) ∼ nP(X > x)
And if we write Mn = max

i=1,...,n
Xi , then

P(Sn > x) ∼ nP(X > x) ∼ P(Mn > x)

That is, for large enough x , {Sn > x} is essentially due to {Mn > x}
and Mn is regularly varying with the same index as X .
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Stable Distributions
Introduction to Extreme Value Distributions

Definition 1.12 ([3, p. 14])

A random variable Y and its distribution are stable if for iid copies Y1,Y2

of Y, and all choices of non-negative constants c1, c2, a, b ∈ R s.t.

c1Y1 + c2Y2
d
= aY + b

Remark 1.13 ([3, p. 14])

For a stable Y , we can find constants an for any n s.t. Sn
d
= anY + bn
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Max-stable Distributions
Introduction to Extreme Value Distributions

Definition 1.14 ( [3, p. 15])

A non-degenerate random variable X and its distribution are max − stable
if they satisfy the relation

Mn
d
= cnX + dn ∀n ≥ 2

for iid X ,X1,X2, ... and appropriate constants cn > 0, dn ∈ R

Remark 1.15 ( [3, p. 15])

If (Xn) is a sequence of iid max-stable random variables, then

c−1n (Mn − dn)
d
= X
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Max-stable Distributions
Introduction to Extreme Value Distributions

From the previous slide, max-stable distributions are limit distributions for
maxima of iid random variables. In particular,

Theorem 1.16 ( [3, p. 17])

The class of max-stable distributions is equivalent to the class of all
possible non-degenerate limit distributions for normalized maxima of iid
random variables.

The next slide introduces the main result we have been working towards,
and the basis of classical extreme value theory.
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Limit Laws for Maxima
Introduction to Extreme Value Distributions

Theorem 1.17 (Fisher-Tippet theorem [3, p. 17])

For a sequence of iid random variables (Xn) and their maximum Mn, if
there exist constants cn > 0, dn ∈ R, and non-degenerate distribution H

s.t. c−1n (Mn − dn)
d→ H, then H belongs to one of the following:

Fr échet : Φα>0(x) =

{
0, x ≤ 0

exp{−x−1}, x > 0

Weibull : ϕα>0(x) =

{
exp{−(−x)α}, x ≤ 0

1 x > 0

Gumbel : Λ(x) = exp{−e−x}, x ∈ R
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Distributions of Angles in Random Packing on Spheres

Cai, Fan, and Jiang [1] derive both the limiting empirical distributions of
random angles and the limiting distributions of extreme angles.

To be more precise, these random angles are the pairwise angles of n
uniformly distributed random unit vectors in Rp in two scenarios:

n→∞, p fixed

n→∞, p growing with n

The focus here will be on the limiting distributions of the extreme angles.
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Empirical Distribution of Random Angles (fixed p)
Distributions of Angles in Random Packing on Spheres

First, consider the scenario where n→∞ but p ≥ 2 is fixed.
Let Θij be the angle between the ith and jth random unit vector (i 6= j).

Theorem 2.1 ([1, p. 1839])

With probability one, µn, the empirical distribution of the angles Θij ,
converges weakly as n→∞ to density

h(θ) =
1√
π

Γ(p2 )

Γ(p+1
2 )

(sin θ)p−2, θ ∈ [0, π]

Remark 2.2 ([1, p. 1840])

Θij ’s are identically distributed, so h(θ) is the pdf of any Θij , with support
[0, π]
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Distribution of Extreme Angles (fixed p)
Distributions of Angles in Random Packing on Spheres

We denote

Θmin = min{Θij ; 1 ≤ i < j ≤ n},Θmax = max{Θij ; 1 ≤ i < j ≤ n}

Theorem 2.3 ([1, p. 1840])

Both n2/(p−1)Θmin and n2/(p−1)(π −Θmax) converge weakly as n→∞ to

F (x) =

{
1− exp{−Kxp−1}, x ≥ 0;

0, x < 0

Where

K =
1

4
√
π

Γ(p2 )

Γ(p+1
2 )
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Distribution of Extreme Angles (fixed p)
Distributions of Angles in Random Packing on Spheres

Remark 2.4 ([1, p. 1840])

The previous theorem gives us that, as n ↑, Θmin is close to zero and Θmax

is close to π

19 / 30



Distribution of Sum Of Max and Min Angles (fixed p)
Distributions of Angles in Random Packing on Spheres

Theorem 2.5 ([1, p. 1842])

n2/(p−1)(Θmax + Θmin − π) converges weakly to the distribution of X − Y ,
where X ,Y are iid with cdf F (x) from Theorem 2.3

F (x) =

{
1− exp{−Kxp−1}, x ≥ 0;

0, x < 0

Remark 2.6 ([1, p. 1843])

Though Θmin and π −Θmax have identical distributions, n2/(p−1)Θmin and
n2/(p−1)(π −Θmax) are asymptotically independent and don’t vanish as
n→∞, so their difference is non-degenerate.
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Distribution of Sum Of Max and Min Angles (fixed p)
Distributions of Angles in Random Packing on Spheres

Remark 2.7 ([1, p. 1843])

Since X ,Y are iid, X − Y is symmetric. Then, Θmin + Θmax are
symmetric around π.

Simulations in Cai et al. [1] show this symmetry around π. On the next
slide is one example, with p = 30 and n = 50
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Distributions of Angles in Random Packing on Spheres
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Empirical Distribution of Random Angles (growing p)
Distributions of Angles in Random Packing on Spheres

Next, consider the scenario where n→∞ and lim
n→∞

p =∞. It is

appropriate here to use the normalized empirical distribution, denoted µn,p.

Theorem 2.8 ([1, p. 1844])

If lim
n→∞

p =∞, then with probability one, µn,p converges weakly to N(0, 1)

Remark 2.9 ([1, p. 1840])

This theorem does not depend on the rate at which p goes to ∞

Since normalizing involves centering (subtracting π
2 ), Theorem 2.8 tells us

that most of the random angles go to π
2 rapidly. Remembering that the

Pearson correlation coefficient is the cosine of the angle, this tells us that
most of the correlations rapidly go to 0! That is, most random vectors in
high-dimensional Euclidean spaces are nearly orthogonal.
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Distribution of Extreme Angles (growing p)
Distributions of Angles in Random Packing on Spheres

The convergence of Θmin and Θmax has 3 cases when p grows with n:

Theorem 2.10 ([1, p. 1845-1846])

Sub-Exponential Case log n
p → 0 as n→∞:

Both Θmin and Θmax converge in probability to π/2

Exponential Case log n
p → β ∈ (0,∞) as n→∞:

Θmin
p→ cos−1

√
1− exp{−4β}; Θmax

p→ π − cos−1
√

1− exp{−4β}
Super-Exponential Case log n

p →∞ as n→∞:

Θmin
p→ 0; Θmax

p→ π

The fixed p case is similar to the Super-Exponential case but with weak
convergence instead of convergence in probability.
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Some Geometric Applications of the Beta Distribution

Frankl and Maehara [2] cover several properties and applications of the
beta distribution.

In particular, we are interested in tying our extremal distributions of
random angles and of Pearson correlations coefficients ρ to ρ2, or R2.

The result on the next slide doesn’t just tell us the distribution of ρ2 for
any pair of random vectors, but for any random vector along with any
random k-space.

25 / 30



Distribution of cos2(θ) and sin2(θ)
Some Geometric Applications of the Beta Distribution

Let L be a fixed 1-space (line) in Rn, and let H be a random k-space in
Rn. That is, for v1, ..., vk independent random points (k < n) in Rn with
mean O (origin) and covariance I (identity), let H be the k-dimensional
linear subspace spanned by Ovi . Let θ be the angle between L and H.

Theorem 3.1 ([2, p. 464])

The random variables cos2(θ) and sin2(θ) have the beta distributions
Beta(k/2, (n − k)/2) and Beta(n − k, (n − k)/2), respectively.
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Proof of 3.1[2]
Some Geometric Applications of the Beta Distribution

N(O, I ) is ’isotropic’, so we may assume L is also random. First take a
random k-space H, then take a random point v and determine the random
line L = Ov , where v = (z1, ..., zn).
Since zi ’s are iid N(0, 1),

∑k
i=1 z

2
i and

∑n
i=k+1 z

2
i are independent

chi-square random variables with k and n − k degrees of freedom,
respectively.
Then cos2(θ) =

∑k
i=1 z

2
i /

∑n
i=1 z

2
i is a Beta random variable. (∗)

(*) If X ,Y are independent chi-square random variables with degrees of
freedom a,b, then X/(X + Y ) is distributed as Beta(a/2, b/2)
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Tail properties of Beta Distribution
Introduction to Extreme Value Distributions (EVDs)

To tie this beta distribution result back to EVDs, we return to Mikosch [3].
The beta distribution is regularly varying, and belongs to the ’Maximum
Domain of Attraction’ of the Weibull distribution

ϕα>0(x) =

{
exp{−(−x)α}, x ≤ 0

1 x > 0

This means that for maximum Mn right endpoint xF , and constants cn,
which can be chosen as xF minus the (1− n−1) quantile of F, we have that

c−1n (Mn − xF )
d→ ϕα

And so we have a closed form limiting distribution for properly normalized
maxima of cos2 of angles between random lines and random k-spaces.
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Recap

Fisher-Tippet theorem [3] tells us that Extrema are asymptotically
distributed as either a Fréchet, Weibull, or Gumbel Distribution

When n→∞ and p fixed, most pairwise angles are close to π/2 (and
so most pairwise ρ’s are close to 0) but the minimum and maximum
pairwise angles are close to 0 and π, respectively

When p also goes to ∞ normalized empirical distribution µn,p
converges weakly to N(0, 1), most pairwise angles go to π/2 rapidly
(and so most pairwise ρ’s rapidly go to 0). Additionally, the minimum
and maximum pairwise angles converge in probability, but to different
values depending on the rate at which p →∞
The cos2 of the angle, or R2, between a random line and a random
k-space is a Beta random variable

The beta distribution has a regularly varying right tail, and normalized
maxima of iid Beta random variables are asymptotically Weibull
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