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Abstract

This report provides an overview of papers covering extreme value distributions, distributions of random angles, and
applications of the beta distribution. Though the discussion of random angles includes scenarios where p grows with n,
this report primarily focuses on the fixed p scenario, and includes both a proof and simulations supporting the main result
for extreme values of angles in this scenario.

1 Motivation

High-dimensional statistical inference methods are developed to work with data with a large number p of explanatory variables
and often a large number n of samples. It is a well known result that as the number of dimensions tends to infinity, almost
all vectors are nearly orthogonal. This has implications for correlations in large datasets, since the correlation coefficient ρ
for two random vectors is the cosine of the angle between those random vectors. Cai et al. [1] derive limiting distributions
for random angles and their extreme values, and Frankl and Maehara [2] provide results on the beta distribution that have
implications for the R2 value given a response vector Y and any number p of explanatory variables X1, . . . , Xp. It helps to
have knowledge of the basics of extreme value theory and the Fisher-Tippet theorem, which are both covered by Mikosch [3].

2 Overview of Papers

2.1 Regular Variation and Fisher-Tippet Theorem

Mikosch’s ”Regular Variation, Subexponentiality, and Their Applications in Probability Theory” defines regular variation
and subsequently derives key theorems and lemmas related to extreme value theory.

Though no universal definition of heavy-tailed distributions can exist, but in the context of studying extrema of iid random
samples, we often set the cutoff for ’light-tailed’ at the exponential distribution. That is, a heavy-tailed distribution is ones
with tails decay slower than that of the exponential distribution. Figure 1 shows an example of a light-tailed (Gamma)
distribution and a heavy-tailed (Burr) distribution. Two classes of heavy-tailed distributions studied widely are regularly
varying and subexponential distributions. Though Mikosch covers both, we just need the former to derive our key result on
extreme value distributions.

Definition 1 ([3, p. 7]). A positive measurable function f is regularly varying(at infinity) with index α ∈ R if
- It is defined on some neighborhood of infinity [x0,∞)
-

lim
x→∞

f(tx)

f(x)
= tα ∀t > 0

Definition 2 ([3, p. 7]). f is slowly varying (at infinity) if f is regularly varying with α = 0

Remark 3 ([3, p. 7]). Every regularly varying f with index α has representation

f(x) = xαL(x)

for some slowly varying function L
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2.1 Regular Variation and Fisher-Tippet Theorem Steve Broll, Spring 2021

Figure 1: Tail behavior of Gamma(2,2) and Burr(1,2,2) Distributions.

We have now established our concept of regular variation. The next theorem and definition give us conditions for the
conditions in Definition 1 to be uniform, and a notation of equivalence between two regularly varying functions.

Theorem 4 ([3, p. 9]). If f is regularly varying with index α, then for 0 < a ≤ b <∞ the convergence of

lim
x→∞

f(tx)

f(x)
= tα

is uniform (in t) on [a, b] for α = 0, (0, b] if α > 0, and [a,∞) if α < 0

Definition 5 ([3, p. 11]). For any positive functions f and g, f(x) ∼ g(x) as x→∞ if

lim
x→∞

f(x)

g(x)
= 1

We say f and g have the same tail behavior.

Now that we have covered the important details of regularly varying functions, we can narrow our focus to random
variables.

Definition 6 ([3, p. 12]). A non-negative random variable X and its distribution are regularly varying with index α ≥ 0
if F̄x is regularly varying with index −α where F̄x = 1− Fx is the right distribution tail.
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2.1 Regular Variation and Fisher-Tippet Theorem Steve Broll, Spring 2021

Lemma 7 ([3, p. 12]). Let X,Y be independent, non-negative, regularly varying random variables with index α ≥ 0. Then
X + Y is regularly varying with index α. Additionally, as x→∞ P (X + Y > x) ∼ P (X > x) + P (Y > x)

Remark 8 ([3, p. 12]). If X,Y are non-negative and regularly varying with index αX , αY and αX < αY , then X + Y is
regularly varying with index αX

Remark 9 ([3, p. 12]). If X,Y are non-negative random variables s.t. P (Y > x) = o(P (X > x)) and X is regularly varying
with index α, then as x→∞ P (X + Y > x) ∼ P (X > x)

That is, if X,Y are regularly varying with index α then the event {X+Y > x} is essentially due to the events of {X > x}
and {Y > x} individually. However, if Y is not regularly varying but of smaller order than X then the event {X + Y > x}
is essentially due to the event {X > x}. These results immediately lead to our first result related to maximal values.

Corollary 10 ([3, p. 13]). Let X,X1, ..., Xn be iid non-negative regularly varying random variables and Sn = X1 + · · ·+Xn.
Then as x→∞, P (Sn > x) = P (X1 + · · ·+Xn > x) ∼ nP (X > x)

And if we write Mn = max
i=1,...,n

Xi, then

P (Sn > x) ∼ nP (X > x) ∼ P (Mn > x)

That is, for large enough x. {Sn > x} is essentially due to {Mn > x} and Mn is regularly varying with the same index
as X. We are now close to the Fisher-Tippet theorem, but we first need to make some requirements on the behaviour of the
maxima of iid random samples. Specifically, we need to define max-stability.

Definition 11 ([3, p. 14]). A random variable Y and its distribution are stable if for iid copies Y1, Y2 of Y, and all choices
of non-negative constants c1, c2, a, b ∈ R s.t.

c1Y1 + c2Y2
d
= aY + b

Remark 12 ([3, p. 14]). For a stable Y , we can find constants an for any n s.t. Sn
d
= anY + bn

Theorem 13 ([3, p. 14]). A stable random variable X has characteristic function

φX(t) = E exp{iXt} = exp{iγt− c|t|α(1− iβsign(t)z(t, α)}

With γ a constant, c > 0, α ∈ (0, 2], β ∈ [−1, 1],

z(t, α) =

{
tan(πα2 ) α 6= 1
−2
π ln|t| α = 1

Definition 14 ([3, p. 14]). α determines essential properties of X, so we may refer to X as α− stable.

2-stable distributions are Gaussian. For α < 2, α−stable distributions have infinite variance, and generally cannot be
represented with elementary functions. The 1−stable distribution (Cauchy) is one of few exceptions.

Definition 15 ([3, p. 15]). A random variable X and its distribution F belong to the domain of attraction of the α−stable
distribution Gα if constants an > 0, bn ∈ R s.t. the following holds:

a−1
n (Sn − bn)

d→ Gα asn→∞

The domain of attraction gives us conditions on the distribution of X so that a−1
n (Sn− bn) converges in distribution to an

α−stable random variable. Oftentimes, it is enough to know that X belongs to the domain of attraction of some non-specified
α−stable distribution, denoted X ∈ DA(α)
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2.2 Random Angles and their Limiting Distributions Steve Broll, Spring 2021

Theorem 16 ([3, p. 15]). A random varibale X and its distribution F belong to the DA of a Normal distribution iff∫
|y|
y2dF (y) is slowly varying

The central limit theorem provides us the desired results for X ∈ DA(2), so we are more interested in the case where this
integral is not slowly varying, and where the variance is infinite. In this case, the tail behavior of X is closely related to the
tail behavior of its limiting α−stable distribution. To tie this into extreme value distributions, we introduce max-stability.

Definition 17 ([3, p. 15]). A non-degenerate random variable X and its distribution are max − stable if they satisfy the
relation

Mn
d
= cnX + dn ∀n ≥ 2

for iid X,X1, X2, ... and appropriate constants cn > 0, dn ∈ R

Remark 18 ([3, p. 17]). If (Xn) is a sequence of iid max-stable random variables, then

c−1
n (Mn − dn)

d
= X

Theorem 19 ([3, p. 17]). The class of max-stable distributions is equivalent to the class of all possible non-degenerate limit
distributions for normalized maxima of iid random variables.

Finally, we arrive at the Fisher-Tippet theorem.

Theorem 20 ([3, p. 17]). For a sequence of iid random variables (Xn) and their maximum Mn, if there exist constants

cn > 0, dn ∈ R, and non-degenerate distribution H s.t. c−1
n (Mn − dn)

d→ H, then H belongs to one of the following:

Fréchet : Φα>0(x) =

{
0, x ≤ 0

exp{−x−1}, x > 0

Weibull : ϕα>0(x) =

{
exp{−(−x)α}, x ≤ 0

1 x > 0

Gumbel : Λ(x) = exp{−e−x}, x ∈ R

The proof of this theorem is very technical, and involves the convergence to types theorem and solving functional equations.

2.2 Random Angles and their Limiting Distributions

In ”Distributions of Angles in Random Packing on Spheres” Cai et al. derive asymptotic properties of angles between unit
vectors generated by random points distributed uniformly on the unit sphere in Rp.

The limiting distributions of random angles are studied under two scenarios, for p fixed and p growing with n. Both
results are summarized here, and both a complete proof and simulations are shown for the fixed p case in later sections. To
start, we consider the scenario where n→∞ but p ≥ 2 is fixed.

Let Θij be the angle between the ith and jth random unit vector (i 6= j) in Rp.

Theorem 21 ([1, p. 1839]). With probability one, µn, the empirical distribution of the angles Θij, converges weakly as n→∞
to density

h(θ) =
1√
π

Γ(p2 )

Γ(p+1
2 )

(sin θ)p−2, θ ∈ [0, π]

Remark 22 ([1, p. 1840]). Θij’s are identically distributed, so h(θ) is the pdf of any Θij, with support [0, π]
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2.2 Random Angles and their Limiting Distributions Steve Broll, Spring 2021

Let
Θmin = min{Θij ; 1 ≤ i < j ≤ n},Θmax = max{Θij ; 1 ≤ i < j ≤ n}

Theorem 23 ([1, p. 1840]). Both n2/(p−1)Θmin and n2/(p−1)(π −Θmax) converge weakly as n→∞ to

F (x) =

{
1− exp{−Kxp−1}, x ≥ 0;

0, x < 0

Where

K =
1

4
√
π

Γ(p2 )

Γ(p+1
2 )

Remark 24 ([1, p. 1840]). As n ↑, Θmin is close to zero and Θmax is close to π

The full proof of Theorem 23 is given in section 3 of this report.

We now have our limiting empirical distribution and the limiting extreme value distributions for random angles in Rp
for fixed p. Before moving onto the growing p case, we have a useful theorem for the limiting distribution of the sum of the
minimum and maximum random angles.

Theorem 25 ([1, p. 1842]). n2/(p−1)(Θmax + Θmin − π) converges weakly to the distribution of X − Y , where X,Y are iid
with cdf F (x) from Theorem 23

F (x) =

{
1− exp{−Kxp−1}, x ≥ 0;

0, x < 0

Remark 26 ([1, p. 1843]). Though Θmin and π − Θmax have identical distributions, n2/(p−1)Θmin and n2/(p−1)(π − Θmax)
are asymptotically independent and don’t vanish as n→∞, so their difference is non-degenerate.

Remark 27 ([1, p. 1843]). Since X,Y are iid, X − Y is symmetric. Then, Θmin + Θmax are symmetric around π.

Now we consider the scenario where n→∞ and lim
n→∞

p =∞. Here we use the normalized empirical distribution µn,p.

Theorem 28 ([1, p. 1844]). If lim
n→∞

p =∞, then with probability one, µn,p converges weakly to N(0, 1)

Since normalizing involves centering (subtracting π
2 ), Theorem 28 tells us that most of the random angles go to π

2 rapidly.
Remembering that the Pearson correlation coefficient is the cosine of the angle, this tells us that most of the correlations
rapidly go to 0. This is one way to show that most random vectors in high-dimensional Euclidean spaces are nearly orthogonal.

It’s important to note that this theorem does not depend on the rate at which p goes to ∞. However, the limiting
distribution for the minimal and maximal random angles depends on the rate at which p grows relative to n.

Theorem 29 ([1, p. 1845-1846]).

• Sub-Exponential Case logn
p → 0 as n→∞:

Both Θmin and Θmax converge in probability to π/2

• Exponential Case logn
p → β ∈ (0,∞) as n→∞:

Θmin
p→ cos−1

√
1− exp{−4β}; Θmax

p→ π − cos−1
√

1− exp{−4β}

• Super-Exponential Case logn
p →∞ as n→∞:

Θmin
p→ 0; Θmax

p→ π

That is, in the sub-exponential case the minimum and maximum correlations go to 0, in the super-exponential case the
minimum and maximum correlations go to -1 and 1 respectively, and in the exponential case the limit depends on the value .
Notice that the fixed p case is similar to the super-exponential case, except in the super-exponential case we have a stronger
mode of convergence.
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2.3 R2 and the Beta Distribution Steve Broll, Spring 2021

2.3 R2 and the Beta Distribution

In ”Some Geometric Applications of the Beta Distribution”, Frankl and Maehara cover various scenarios where the Beta
distribution arises, one of which is the angle between a line and a random k−space.

Let L be a fixed 1-space (line) in Rn, and let H be a random k-space in Rn. That is, for v1, ..., vk independent random
points (k < n) in Rn with mean O (origin) and covariance I (identity), let H be the k-dimensional linear subspace spanned
by Ovi. Let θ be the angle between L and H.

Theorem 30 ([2, p. 464]). The random variables cos2(θ) and sin2(θ) have the beta distributions Beta(k/2, (n − k)/2) and
Beta(n− k, (n− k)/2), respectively.

A full proof is given in section 3.
Observing that cos2(θ) is ρ2 = R2, we have that for a response vector Y and (fixed) k iid explanatory random variables

X1, . . . , Xk, the R2 is a Beta-distributed random variable. In addition to having the limiting distributions for Θmin,Θmax

and so for ρmin, ρmax, if we find the extreme value distribution for iid Beta random variables, we can also derive the limiting
distribution for R2

max.
From Mikosch [3], the beta distribution belongs to the Maximum Domain of Attraction (MDA) of the Weibull distribution

ϕα>0(x) =

{
exp{−(−x)α}, x ≤ 0

1 x > 0

That is, for maximum Mn, right endpoint xF , and constants cn, which can be chosen as xF minus the (1−n−1) quantile
of F, we have that

c−1
n (Mn − xF )

d→ ϕα

And so we have a closed form limiting distribution for properly normalized maxima of R2.

3 Proof of Main Results

The proof of Theorem 23 requires covering some technical details and several lemmas first. The proof of Theorem 30 is quite
short in comparison. Cai et al. cite other works for the proofs of lemmas, and those citations are given next to the lemma
number. When other papers are cited in those proofs, the citation can be found inline.

3.1 Proof of Theorem 23

Recall that X1, X2, . . . are random points uniformly distributed on the unit sphere of Rp, Θij is the angle between
→
OXi and

→
OXj , and ρij = cos Θij for any i 6= j. The distribution of (X1, X2, . . . ) is the same as the distribution of ( Y1

||Y1|| ,
Y1

||Y1|| , . . . )

for Y1, Y2, ... iid Np(0, Ip). Thus

ρij = cos Θij =
Y Ti Yj

||Yi|| · ||Yj ||
∀i 6= j

Set
Mn = max

1≤i<j≤n
ρij = cos Θmin (1)

Lemma 31 (Cai and Jiang (2012)[4, p. 15]). Let p ≥ 2 Then ρij are pairwise independent and identically distributed with
density function

g(ρ) =
Γ(p2 )

√
πΓ(p−1

2 )
(1− ρ2)

p−3
2 , |ρ| < 1

Proof:
It is enough to prove that if {U, V,W} are iid with an n-dimensional spherical distribution and P (U = 0) = 0, then ρU,V

and
ρU,W are iid with density
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3.1 Proof of Theorem 23 Steve Broll, Spring 2021

Γ(p−1
2 )

√
πΓ(p−2

2 )
(1− ρ2)

p−4
2 , |ρ| < 1

where here the only difference from g(ρ) is changing the degree of freedom from p to p− 1.

Let {1} be the span of 1. Then since P (U = 0) = 0, Y := U
||U || is well defined. By definition, OU

P
= U for any orthogonal

matrix O, so

OY =
OU

||OU ||
P
=

U

||U ||
= Y

That is, the probability measure generated by Y is an orthogonal-invariant measure on the unit sphere in Rp. Y then has
the uniform distribution on the unit sphere. Thus,

P (U ∈ {1}) = P (V ∈ {1}) = P (W ∈ {1}) = 0 where {1} is the span of 1

It follows from Jiang (2004) [5] and Muirhead (1982) [6] that ρU,V and ρU,W have the same density f(ρ). Swapping p for
p− 1, we have our desired density g(ρ)
To show independence, we use that U, V,W are independent and so

E[g(ρU,V )ḣ(ρU,W )] = E{E[g(ρU,V )|U ]Ė[h(ρU,W )|U ]}

Let V = (V1, . . . , Vp)
T ∈ Rn and V̄ = 1

n

∑n
i=1 Vi. For any numbers u1, . . . , un s.t. at least two are not identical, it follows

from Muirhead (1982) [6] that

ρu,V =

∑n
i=1(ui − ū)(Vi − V̄ )√∑n

i=1(ui − ū)2
∑̇n

i=1(Vi − V̄ )2

has the density f(ρ). So given U , the probability distribution of ρU,V does not depend on the value of U . Thus,

E[h(ρU,W )|U ] = E[h(ρU,W )] and E[h(ρU,V )|U ] = E[h(ρU,V )]

Notice that y = cosx is strictly decreasing on [0, π], hence Θij = cos−1 ρij .
Lemma 32 follows immediately from Lemma 31.

Lemma 32. Let p ≥ 2. Then Θij are pairwise independent and identically distributed with density function

h(θ) =
Γ(p2 )

√
πΓ(p−1

2 )
(sin θ)

p
2 , θ ∈ [0, π]

If we replace Θij with π −Θij, we get the same density.

Lemma 33 (Arratia et al. (1989)[7, p. 11]). Let I be a finite set, and for each α ∈ I,Xα be a Bernoulli random variable
with pα = P (Xα = 1) = 1− P (Xα = 0) > 0. Set W =

∑
α∈I Xα and λ = EW =

∑
α∈I pα. For each α ∈ I, suppose we have

chosen Bα ⊂ I with α ∈ Bα. Define

b1 =
∑
α∈I

∑
β∈Bα

pαpβ and b2 =
∑
α∈I

∑
α6=β∈Bα

P (Xα = 1, Xβ = 1)

For each α ∈ I, assume Xα is independent of {Xβ ;β ∈ 1−Bα}. Then

|P (Xα = 0 ∀α ∈ I)− e−λ| ≤ b1 + b2
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Proof
Define Z to be a Poisson random variable with EZ = λ, and h to be a function such that ||h|| = 1. Let h̄(·) = h(·)−Eh(Z).
Define linear operators S, T so that for some function f and for h

(Tf)(w) = wf(w)− λf(w + 1), w ≥ 0

(Sh)(w + 1) = −λ−1P (Z = w)−1E(h(Z);Z ≤ w), w ≥ 0

Define f = Sh̄, so that Tf = h̄, and E[Tf(W ))] = E(h(W )− h(Z)). Then we want to show that

|E{h(w)− h(Z)}| ≤ (b1 + b2)||∆f ||+ b′3||f ||

We first need bounds on ||f || and ||∆f ||, but we notice that if Eh(Z) = 0, then

(Sh)(w + 1) = −λ−1P (Z = w)−1cov(h(z), (1(Z ≤ w))

For fixed k ≥ 0,

cov(h(z), (1(Z ≤ w)) = P (Z ≤ k ∧ w)− P (Z ≤ k)P (Z ≤ w)

Since d
dλP (Z ≤ j) = −P (Z = j), we have

P (Z ≤ j) = 1−
∫ λ

0

e−vvj/j!dv =

∫ ∞
λ

e−vvj/j!dv

For k = 0, we have

(1− e−λ)/λ = −f(1) > −f(2) > · · · > 0

And so

||∆f || ≤ (1− e−λ)/λ and ||f || ≤ (1− e−λ)/λ

Now we need to show that |E{h(w)− h(Z)}| ≤ (b1 + b2)||∆f ||+ b′3||f ||.
Let Vα :=

∑
β∈I−Bα Xβ and Wα. We compute

E{h(W )− h(Z)} = E{Wf(W )− λf(W + 1)} =
∑
α∈I

E{Xαf(W )− pαf(W + 1)}

=
∑
α∈I

E{pαf(Wα + 1)− pαf(Wα + 1)}+
∑
α∈I

E{Xαf(Wα)− pαf(Wα + 1)}

=
∑
α∈I

E{pαXα[f(Wα + 1)− f(Wα + 2)]}+
∑
α∈I

E{(X − pα)[f(Wα + 1)− f(Vα + 1)]}+
∑
α∈I

E{(Xα − pα)f(Vα + 1)}

≤ ||∆f ||
∑
α∈I

p2
α + ||∆f ||(

∑
α∈I

∑
α6=β∈Bα

pαβ + pαpβ) + b′3||f ||

where
b′3 =

∑
α∈I

s′α ≤
∑
α∈I

sα =
∑
α∈I

E|E{Xα − pα|
∑

β∈I−Bα

Xβ}|

= (b1 + b2)||∆f ||+ b′3||f || ≤ b1 + b2)||∆f ||+ b3||f ||

With our added condition that Xα is independent of {Xβ ; β ∈ I −Bα}, b3 = 0, and the final term simplifies to

(b1 + b2)||∆f ||

And so

|P (W = 0)− e−λ| ≤ (b1 + b2)
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3.1 Proof of Theorem 23 Steve Broll, Spring 2021

and our desired result follows.

The next lemma is just a special case of Lemma 33.

Lemma 34. Let I be an index set and {Bα, α ∈ I} be a set of subsets of I. Let also {ηα, α ∈ I} be random variables. For a
given t ∈ R, set λ−

∑
α∈I P (ηα > t). Then

|P (max
α∈I

ηα ≤ t)− e−λ| ≤ (1 ∧ λ−1)(b1 + b2 + b3)

where

b1 =
∑
α∈I

∑
β∈Bα

P (ηα > t)P (ηβ > t), b2 =
∑
α∈I

∑
α6=β∈Bα

P (ηα > t, ηβ > t), b3 =
∑
α∈I

E|P (ηα > t|σ(ηβ , β 6∈ Bα))− P (ηα > t)|

and σ(ηβ , β 6∈ Bα) is the σ−algebra generated by {ηβ , β 6∈ Bα}. In particular, if ηα is independent of {ηβ , β 6∈ Bα} for
each α, b3 = 0.

Proposition 35 ([1, p. 1854]). Fix p ≥ 2. Then n4(p−1)(1−Mn) converges to distribution function

F1(x) = 1− exp{−K1x
p−1
2 }, x ≥ 0 (2)

in distribution as n→∞, where

K1 =
2(p−5)/2Γ(p2 )
√
πΓ(p+1

2 )

Proof:
Set t = tn = 1− xn−4/(p−1) for x ≥ 0. Then

t→ 1 and t2 = 1− 2x

n−4/(p−1)
+O(

1

n8(p−1)
) as n→∞

P (n4/(p−1)(1−Mn) < x) = P (Mn > t) = 1− P (Mn ≤ t)

Noting that F1(x) is continuous, to prove Proposition 32 it is then enough to show that

P (Mn ≤ t)→ exp{−K1x(p− 1)/2} as n→∞

Take I = {(i, j); 1 ≤ i < j ≤ n}. For u = (i, j) ∈ I, set Bu = {(k, l) ∈ I; one of k and l = i or j, but (k, l 6= u)}
ηu = ρij and Au = Aij = {ρij > t}
By Lemma 34,

|P (Mn ≤ t)− e−λn | ≤ b1,n + b2,n where λn =
n(n− 1)

2
P (A12)

and b1,n ≤ 2n3P (A12)2, b2,n ≤ 2n3P (A12A13)

By Lemma 31, A12 and A13 are independent events with equal probability. Then whenever n ≥ 2

b1,n ∨ b2,n ≤ 2n3P (A12)2 ≤ 8nλ2
n

(n− 1)2
≤ 32λ2

n

n

Also by Lemma 31 we have

P (A12) =

∫ 1

t

g(x)dx =
Γ(p2 )

√
πΓ(p−1

2 )

∫ 1

t

(1− x2)
p−3
2 dx
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3.1 Proof of Theorem 23 Steve Broll, Spring 2021

Let m = p−3
2 ≥ −1/2, and let x =

√
s and so dx = 1

2
√
s
ds. Then∫ 1

t

(1− x2)dx =

∫ 1

t2

1

2
√
s

(1− s)mds ∼ 1

2

∫ 1

t2
(1− s)mds =

1

2m+ 2
(1− t2)m+1

Applying this, we have that as n→∞

λn ∼
n2Γ(p2

2
√
πΓ(p−1

2 )

∫ 1

t

(1− x2)
p−3
2 dx ∼

n2Γ(p2 )

2
√
π(p− 1)Γ(p−1

2 )
(1− t2)

p−1
2 =

Γ(p2 )

4
√
πΓ(p+1

2 )
(n

4
p−1 (1− t2))

p−1
2

So as n→∞

n
4
p−1 (1− t2) = 2x+O(

1

n
4
p−1

)

Therefore

λn →
2
p−5
2

√
π

Γ(p2 )

Γ(p+1
2 )

x
p−1
2 = K1x

p−1
2

Then applying our bounds on b1,n ∨ b2,n and |P (Mn ≤ t)− e−λn | we finally have

lim
n→∞

P (Mn ≤ t) = − exp{−K1x
p−1
2 }

Mn = cos Θmin by (1), so we use identity 1− cosh = 2 sin2 h
2 for h ∈ R and get

n4/(p−1)(1−Mn) = 2n4/(p−1) sin2 Θmin

2
(2)

By Proposition 35 and Slutsky’s Theorem, sin Θmin

2 → 0 in probability as n→∞, which implies that Θmin → 0.

From (2) and the fact that limx→0
sin x
x = 1 we have

n4/(p−1)(1−Mn)
1
2n

4/(p−1)Θ2
min

p→ 1

Again using Proposition 35 and Slutskys Theorem, 1
2n

4/(p−1)Θ2
min converges in distribution to F1(x).

Additionally, for any x > 0

P (
1

2
n4/(p−1)Θ2

min ≤ x) = P (n2/(p−1)Θ2
min ≤

x2

2
→ 1− exp{−K1(x2/2)(p−1)/2} = 1− exp{−Kxp−1} (3)

where

K = 2(1−p)/2K1 =
Γ(p2 )

4
√
πΓ(p+1

2 )

Next, we must show that

n2(p−1)(π −Θmax) converges weakly to F (x) as n→∞

To show this, we only need to use a few properties of ρij : That they are pairwise independent, that each has density g(ρ)
shown in Lemma 31, and that ρij is independent of all ρk,l where {k, l} ∩ {i, j} = ∅.
Using Lemmas 31 and 32, these properties are equivalent to the following: Θij’s are pairwise independent, Θij has the
density h(θ) from Lemma 12, and that Θij is independent of all Θk,l where {k, l} ∩ {i, j} = ∅. Similarly, we have the
same properties replacing Θij with π −Θij, where min(π −Θij) = π −Θmax.
Finally, recalling (3) we have

P (n2/(p−1)(π −Θ) ≤ x)→ 1− exp{−Kxp−1} as n→∞
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3.2 Proof of Theorem 30

Proof:
N(O, I) is ’isotropic’, so we may assume L is also random. First take a random k-space H, then take a random point v
and determine the random line L = Ov, where v = (z1, ..., zn).

Since zi’s are iid N(0, 1),
∑k
i=1 z

2
i and

∑n
i=k+1 z

2
i are independent chi-square random variables with k and n− k degrees

of freedom, respectively.
Then cos2(θ) =

∑k
i=1 z

2
i /

∑n
i=1 z

2
i is a Beta(k/2, (n− k)/2) random variable.

Additionally, sin2(θ) =
∑n
i=k+1 z

2
i /

∑n
i=1 z

2
i is a Beta((n− k)/2, k/2) random variable.

4 Simulations

To keep this section brief, three scenarios are considered: p fixed at 2, 30, and at 1500 to represent a high-dimensional case
(i.e. large omics data).

To be consistent with the paper by Cai et al., angles were computed by computing multivariate normal random variables
of p dimension, and normalizing them to get points on the unit sphere in Rp. All pairwise angles are then computed using
the unit vectors generated from those points.

Figures 2-10 in the Appendix show the distributions of angles, their cosines, and their squared cosines as n grows for
p = 2, p = 30, p = 1500, respectively. As is expected, for the fixed p scenario we actually don’t have any change in the limiting
distributions depending on the value of p itself. Additionally, also as expected, the rate of convergence does not appear to
depend on p. With these figures we have a visual representation of the limiting distributions and tail behavior for the angles,
correlations, and R2 values themselves.

The proofs in section 3 of this report show the full derivation of the limiting distributions of the minima and maxima of
random angles and of the R2 values, and these simulations support the more general results on the asymptotic behavior of
random angles for fixed p.
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Figure 2: Distributions of Random Angles for p = 2.

Figure 3: Distributions of Cosines of Random Angles for p = 2.
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Figure 4: Distributions of Squared Cosines of Random Angles for p = 2.

Figure 5: Distributions of Random Angles for p = 30.
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Figure 6: Distributions of Cosines of Random Angles for p = 30.

Figure 7: Distributions of Squared Cosines of Random Angles for p = 30.
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Figure 8: Distributions of Random Angles for p = 1500.

Figure 9: Distributions of Cosines of Random Angles for p = 1500.
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Figure 10: Distributions of Squared Cosines of Random Angles for p = 1500.
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