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Clinician gives you a longitudinal clinical outcome, along with hundreds of
longitudinal -omics variables, and asks

Which variables co-vary with the outcome?

Steve Broll — PROLONG JSM 2023



More Details for Motivation | Cornell University

We have:

m Longitudinal measurements for some continuous phenotype and for -omics
variables with only a few time points

m Large amount of variables with relatively small number of subjects
We want to:

m ldentify -omics variables that co-vary with the phenotype

m Overcome time dependence, low signal, and high subject variability

m Incorporate correlation of the variables
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Tuberculosis Data Comell University

15 subjects, TB patients treated with RHEZ [rifampin (R), isoniazid (H),
ethambutol (E), and pyrazinamide (Z)]

Mycobacterial load measured by Time to Positivity (TTP)

352 metabolites with complete measurements for >80% of subjects,
softimpute used for missing values

4 time points, days 1, 3, 5, 15
Additionally, we have microbiome and RNAseq data [1] for days 1 and 15 -
more on this later
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TB Example Metabolite 1 5V Comell University
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TB Example Metabolite 2 Comell University
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General Model Idea Cornell University

m Take first difference of the data to deal with observed temporal dependence

m Stack our t — 1 first differenced value of X and Y so we have
Y=Y,-Y; Y;3-Y, Y,-Wn[
And for each variable j we have
Xj=1Xpu— X3 Xp—Xp  Xp-—Xul'

m Set up design matrix so that each first differenced Y value is regressed on all
prior first differenced values of X to account for potential lags

m Apply network and group lasso penalties to induce sparsity while utilizing
correlation and inherent group structure
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Moving X from Tensor to Matrix

Cornell University
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Group Lasso Laplacian Penalty .

Given our stacked response vector Y and design matrix X we seek to minimize

(Y = XB)T(Y = XB)+ M |86, +287L8,
j=1

m )\ is the tuning parameter for our group lasso penalty, where each group j
corresponds to all of the representations in the design matrix of the jth
variable

m )\, is the tuning parameter for the network penalty

m L is the Laplacian matrix for the weighted graph where the edge weights
between each pair of variables are their absolute correlation
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Nice Properties of this Penalty | el Uiy

m Each variable is represented multiple times in the model, but the group lasso
penalty results in either all zero or all non-zero coefficients for the
representations of each variable, helping interpretability

m If two variables are highly correlated, and one is a strong enough predictor to
be selected, the other variable is likely to be selected as well

m If two variables are identical, either both will be selected and have the same
coefficient or neither will be selected
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m Linear Mixed Effects Model
m Wald test on the A scale with each X/
m PROLONG

In the following simulations, the univariate models are evaluated at different FDR
thresholds and compared to PROLONG

Steve Broll — PROLONG JSM 2023



Pe rform ance in S imu |ati0nS Cornell University

Uncorrelated Simulation Scheme
1~ N(p,Xx); w1~ U(10,20),Xx = diag(oy,...,0p),0; ~ U(1,2)
xo ~ 1+ N(du, Xx); dp = (5,...,10,0,...,0)
xp~x 1+ N0,Xx) t€3,4
y1 ~ N(15,5); Yo = N(y1 + B(z2 — 21),5)
ys ~ N(y2 + B(xs — x2) + B(x2 — 21),5)
ys ~ N(ys + B(wg — x3) + B(x3 — 22) + B(22 — 21),5)

B=(1/3,1/3,...,0,...,0)
SNR ranging from 1 to 2 in targets
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PerfOrmance in SimU|ati0nS Cornell University

Uncorrelated Simulated Variables
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Performance in Simulations

Uncorrelated Simulated Variables

Cornell University
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Performance In SimU|ati0nS | Cornell University

Correlated Simulation Scheme

Same as previous scenario, but with

2 0
we= [ 3]

where Yo generated so that the variances are in the same range as in X, and the
covariances correspond to correlations uniformly drawn from (—1,1)
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Performance in Simulations .

Correlated Simulated Variables
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Performance in Simulations

Correlated Simulated Variables

Cornell University
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Performance in Simulations

Correlated Simulated Variables

Cornell University
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Performance with Real Data .

m Univariate methods don't pick up a single metabolite from our 352 even
with an FDR of 0.5

m PROLONG selects 45 metabolites, including targets identified by our
clinician collaborators and during our EDA
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S umma I’y | Cornell University

m High sensitivity and specificity in simulations

m Group lasso + network penalty model is slightly less sensitive at some A;
values but much more specific than regular lasso + network penalty

m Limited preprocessing necessary

m Stable across choice of Ay, A\; can be chosen with usual MSE
cross-validation for lasso and group lasso or with a grid search using
AIC/BIC, Mallow's C,, etc
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Microbiome and Other -Omic Extension Comnell University

m Extension to other continuous omics variables is immediate

m Our current work is incorporating the relative abundances of 282
microbiome species measured at the first and last time points
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Challenges with Microbiome Data | el Uiy

Zero Inflation

Compositional data - relative abundances are used instead of raw counts

Estimating correlation within microbiome and between microbiome and
metabolites

Subset of time points for clinical outcome and metabolomic variables

High between-subject variation
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We propose incorporating the compositional data directly into the same model
framework along with the metabolomic variables by using the radial

transformation [2]
x

[|]2

Additional investigation is needed to determine if Pearson’s correlation using the
radial transformed data is adequate for the purposes of our network constraint.
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