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Motivation in Short

Clinician gives you a longitudinal clinical outcome, along with hundreds of
longitudinal -omics variables, and asks

Which variables co-vary with the outcome?
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More Details for Motivation

We have:
Longitudinal measurements for some continuous phenotype and for -omics
variables with only a few time points
Large amount of variables with relatively small number of subjects

We want to:
Identify -omics variables that co-vary with the phenotype
Overcome time dependence, low signal, and high subject variability
Incorporate correlation of the variables
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Tuberculosis Data

15 subjects, TB patients treated with RHEZ [rifampin (R), isoniazid (H),
ethambutol (E), and pyrazinamide (Z)]
Mycobacterial load measured by Time to Positivity (TTP)
352 metabolites with complete measurements for >80% of subjects,
softImpute used for missing values
4 time points, days 1, 3, 5, 15
Additionally, we have microbiome and RNAseq data [1] for days 1 and 15 -
more on this later
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TB Clinical Outcome
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TB Example Metabolite 1
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TB Example Metabolite 2
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General Model Idea

Take first difference of the data to deal with observed temporal dependence
Stack our t − 1 first differenced value of X and Y so we have

Y = |Y4 − Y3 Y3 − Y2 Y2 − Y1|T

And for each variable j we have

Xj = |Xj4 − Xj3 Xj3 − Xj2 Xj2 − Xj1|T

Set up design matrix so that each first differenced Y value is regressed on all
prior first differenced values of X to account for potential lags
Apply network and group lasso penalties to induce sparsity while utilizing
correlation and inherent group structure
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Vectorized Y

Ỹ =


Ỹ11 · · · Ỹ1T

...
Ỹn1 · · · ỸnT


n×T

→


∆Ỹ11 · · · ∆Ỹ1(T −1)

...
∆Ỹn1 · · · ∆Ỹn(T −1)


n×(t−1)

→ Y =



∆Ỹ11
...

∆Ỹn1
∆Ỹ1(T −1)

...
∆Ỹn(T −1)


n(T −1)×1
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Moving X from Tensor to Matrix

X̃ =


X̃

[j]
11 · · · X̃

[j]
1T

...
X̃

[j]
n1 · · · X̃

[j]
nT


n×T

→


∆X̃

[j]
11 · · · ∆X̃

[j]
1(T −1)

...
∆X̃

[j]
n1 · · · ∆X̃

[j]
n(T −1)


n×(T −1)

→ X [j] =



∆X̃
[j]
11

0 0 0...
∆X̃

[j]
n1

0
∆X̃

[j]
11 ∆X̃

[j]
12

0 0...
∆X̃

[j]
n1 ∆X̃

[j]
n2

0 0 . . . 0

0 0 0
∆X̃

[j]
11 · · · ∆X̃

[j]
1(T −1)

...
∆X̃

[j]
n1 · · · ∆X̃

[j]
n(T −1)


n(T −1)×T (T −1)/2
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Group Lasso Laplacian Penalty

Given our stacked response vector Y and design matrix X we seek to minimize

(Y − Xβ)T (Y − Xβ) + λ1

p∑
j=1

∥∥∥β(j)

∥∥∥
2

+ λ2β
T Lβ,

λ1 is the tuning parameter for our group lasso penalty, where each group j
corresponds to all of the representations in the design matrix of the jth
variable
λ2 is the tuning parameter for the network penalty
L is the Laplacian matrix for the weighted graph where the edge weights
between each pair of variables are their absolute correlation
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Nice Properties of this Penalty

Each variable is represented multiple times in the model, but the group lasso
penalty results in either all zero or all non-zero coefficients for the
representations of each variable, helping interpretability
If two variables are highly correlated, and one is a strong enough predictor to
be selected, the other variable is likely to be selected as well
If two variables are identical, either both will be selected and have the same
coefficient or neither will be selected
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Models Compared

Linear Mixed Effects Model
Wald test on the ∆ scale with each X [j]

PROLONG
In the following simulations, the univariate models are evaluated at different FDR
thresholds and compared to PROLONG
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Performance in Simulations
Uncorrelated Simulation Scheme

x1 ∼ N(µ, ΣX); µ ∼ U(10, 20), ΣX = diag(σ1, . . . , σp), σj ∼ U(1, 2)

x2 ∼ x1 + N(dµ, ΣX); dµ = (5, . . . , 10, 0, . . . , 0)

xt ∼ xt−1 + N(0, ΣX) t ∈ 3, 4

y1 ∼ N(15, 5); y2 = N(y1 + β(x2 − x1), 5)

y3 ∼ N(y2 + β(x3 − x2) + β(x2 − x1), 5)

y4 ∼ N(y3 + β(x4 − x3) + β(x3 − x2) + β(x2 − x1), 5)

β = (1/3, 1/3, . . . , 0, . . . , 0)

SNR ranging from 1 to 2 in targets
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Performance in Simulations
Uncorrelated Simulated Variables
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Performance in Simulations
Uncorrelated Simulated Variables
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Performance in Simulations
Correlated Simulation Scheme

Same as previous scenario, but with

ΣX =
[
ΣC 0
0 Σϵ

]
where ΣC generated so that the variances are in the same range as in Σϵ and the
covariances correspond to correlations uniformly drawn from (−1, 1)
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Performance in Simulations
Correlated Simulated Variables
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Performance in Simulations
Correlated Simulated Variables
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Performance in Simulations
Correlated Simulated Variables
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Performance with Real Data

Univariate methods don’t pick up a single metabolite from our 352 even
with an FDR of 0.5
PROLONG selects 45 metabolites, including targets identified by our
clinician collaborators and during our EDA
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Summary

High sensitivity and specificity in simulations
Group lasso + network penalty model is slightly less sensitive at some λ2
values but much more specific than regular lasso + network penalty
Limited preprocessing necessary
Stable across choice of λ2, λ1 can be chosen with usual MSE
cross-validation for lasso and group lasso or with a grid search using
AIC/BIC, Mallow’s Cp, etc
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Microbiome and Other -Omic Extension

Extension to other continuous omics variables is immediate
Our current work is incorporating the relative abundances of 282
microbiome species measured at the first and last time points
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Challenges with Microbiome Data

Zero Inflation
Compositional data - relative abundances are used instead of raw counts
Estimating correlation within microbiome and between microbiome and
metabolites
Subset of time points for clinical outcome and metabolomic variables
High between-subject variation
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Microbiome Composition at Class Level
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Proposed Model

We propose incorporating the compositional data directly into the same model
framework along with the metabolomic variables by using the radial
transformation [2]

x

||x||2
Additional investigation is needed to determine if Pearson’s correlation using the
radial transformed data is adequate for the purposes of our network constraint.
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