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Motivation in Short

Clinician gives you a longitudinal clinical outcome, along with

hundreds (or thousands) of longitudinal -omics variables, and

asks which variables co-vary with the outcome?
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Motivation in Pictures - Outcome
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Motivation in Pictures - Example Variable 1
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Motivation in Pictures - Example Variable 2
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Motivation in More Words

We have:

• Longitudinal measurements for some continuous outcome

and for -omics variables with only a few time points

• Large amount of variables with relatively small number of

subjects

We want to:

• Identify -omics variables that co-vary with the outcome

• Overcome time dependence, low signal, and high subject

variability

• Incorporate correlation of the variables
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Tuberculosis Data

• 15 subjects, TB patients treated with RHEZ [rifampin

(R), isoniazid (H), ethambutol (E), and pyrazinamide (Z)]

• TB mycobacterial load measured by Time to Positivity

(TTP) as our Y

• 352 urinary metabolites as our X

• 4 time points, days 0, 2, 4, 14
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General Model Idea

• Take first-difference of the data to deal with observed

temporal dependence

• Stack our t − 1 first-differenced value of X and Y so we

have

Y = [Y4 − Y3 Y3 − Y2 Y2 − Y1]
T

And for each variable j we have

Xj = [Xj4 − Xj3 Xj3 − Xj2 Xj2 − Xj1]
T

• Set up design matrix so that each first-differenced Y

value is regressed on all prior first-differenced values of X

to account for potential lags

• Apply network and group lasso penalties to induce sparsity

while utilizing correlation and inherent group structure 8



First-Differencing
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First-Differencing

• Analogous to paired test, increase in power compared to

unpaired

• Remove any subject level (time invariant) fixed effects
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Vectorized Y

Ỹ =

Ỹ11 · · · Ỹ1T

...

Ỹn1 · · · ỸnT


n×T

→

∆Ỹ11 · · · ∆Ỹ1(T−1)
...

∆Ỹn1 · · · ∆Ỹn(T−1)


n×(t−1)

→ Y =



∆Ỹ11

...

∆Ỹn1

∆Ỹ1(T−1)
...

∆Ỹn(T−1)


n(T−1)×1
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Moving X from Tensor to Matrix

X̃ [j] =

X̃
[j]
11 · · · X̃

[j]
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Moving X from Tensor to Matrix

Now replace ∆X̃
[j]
it with row vector

∆X̃ [j] = |∆X̃
[1]
ij ∆X̃

[2]
ij . . .∆X̃

[p]
ij |

→ X [j] =



∆X̃
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Group Lasso Laplacian Penalty

Given our first-differenced and stacked response vector Y ,

first-differenced and stacked design matrix X we seek to

minimize

(Y − Xβ)T (Y − Xβ) + λ1

p∑
j=1

∥∥β(j)

∥∥
2
+ λ2β

TLβ,

• λ1 is the tuning parameter for our group lasso penalty,

where each group j corresponds to all of the

representations in the design matrix of the jth variable

• λ2 is the tuning parameter for the network penalty

• L is the Laplacian matrix for the weighted graph where

the edge weights between each pair of variables are their

absolute correlation 14



Models Compared

• Linear Mixed Effects Model, one variable at a time

• Wald test on the ∆ scale, one variable at a time

• PROLONG

In the following simulations, the univariate models are

evaluated at different FDR thresholds and compared to

PROLONG
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Simulation Scenarios

• Simulated data mimics real TB data in means, variances

etc. but with specified relationships between X ’s and Y

• Y is generated both on first-difference scale and levels

scale in our paper

• Outcome is generated by simulated, correlated target

variables at varying dimensions with a SNR ranging from

1 to 2

• 10, 20, and 50 target variables

• 20, 80, and 300 noise variables

• Each scenario is run 100 times, and the models are

evaluated by selection rate of target and noise variables
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Performance in Simulations
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Performance in Simulations
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Performance in Simulations
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Performance with Real Data

• Univariate mixed effect models do not pick up a single

metabolite from our 352 at an FDR of 0.05

• Univariate Delta Wald tests pick 116 metabolites at an

FDR of 0.05

• PROLONG selects ∼ 30 metabolites, including targets

identified by our clinician collaborators and during our

EDA
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Applying PROLONG

• R package ‘prolong‘, available on Github currently, takes

in raw time-scale data and

• First-differences and shapes the data into the block

design structure

• Automatically selects hyper-parameters and fits the

model

• Provides visualizations for the full data and for selected

variables

• Shiny app is in development and will be included within

the ‘prolong‘ package, providing a point-and-click

interface for users with less familiarity with R
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R Package Selected Variable Trajectories
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Pooled Data

• Same RHEZ subjects as before

• Additional 19 subjects, TB patients treated with NTZ

(Nitazoxanide)

• Same 4 time points, 352 metabolites

23



Pooled Data - Outcome
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Pooled Data - Example Variable 1
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Pooled Data - Example Variable 2
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Preliminary Results - Simulation Setup

• Simulated data is similar to previous setup, but with a

second group with no differential change and no effect on

Y

• Much smaller SNR range to produce power curves

• 20 targets with varying SNR, 80 noise variables

• Each scenario is run 100 times, and the models are

evaluated by power and false positive rate (FPR)
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Preliminary Results - Delta Scale Sim
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Preliminary Results - Levels Scale Sim
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Contact and Manuscript

Thank You!
R package available via Github:

https://github.com/stevebroll/prolong

Manuscript available via Biorxiv:
Steve Broll, Sumanta Basu, Myung Hee Lee, and Martin T. Wells.

PROLONG: Penalized regression for outcome guided longitudinal omics

analysis with network and group constraints.

bioRxiv, 2023.

Email me at sb2643@cornell.edu

https://stevebroll.github.io
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